Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children.
نویسندگان
چکیده
Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas exhibited enhanced functional connectivity in blind children and that this reorganization was spatially associated with the transcription levels of specific members of the cAMP Response Element Binding protein gene family. Using systems-level analyses, this study advances our understanding of human neuroplasticity and its genetic underpinnings following sensory deprivation.
منابع مشابه
P5: Memory and Talent
A person, who is talented, performs in a certain capacity above the norm. Talent is different from intelligence which is a response to a circumstance using knowledge and skill. The attributes of talent are exceptional memory, rapid processing speed, and high motivation, an affinity for learning, creativity and optimal cognition. There is some proof suggests that certain aspects of talent are re...
متن کاملEnhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex
Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory c...
متن کاملBrain Plasticity in Blind Subjects Centralizes Beyond the Modal Cortices
It is well established that the human brain reorganizes following sensory deprivations. In blind individuals, visual processing regions including the lateral occipital cortex (LOC) are activated by auditory and tactile stimuli as demonstrated by neurophysiological and neuroimaging investigations. The mechanisms for such plasticity remain unclear, but shifts in connectivity across existing neura...
متن کاملAre the Primary Sensory Cortices Multisensory?
Historically the brain has been viewed as operating in a modular and hierarchical manner. In particular it was previously assumed that each of the primary sensory cortices processed input from a single sensory modality before feeding this information to higher regions of the brain devoted to multisensory integration. This review however outlines a wealth of findings that have emerged in recent ...
متن کاملEffect of neuregulin-1 on the auditory cortex in adult C57BL/6J mice
Objective(s): We sought to explore whether neuregulin-1(NRG1) would have a protective effect on the auditory cortices of adult C57BL/6J mice.Materials and Methods: We used RTPCR and Western blot (WB) to detect the expression of NRG1 and ERBB4 (the receptor of NRG1) in the auditory cortices of C57BL/6J mice of different ages (6–8 weeks an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 26 شماره
صفحات -
تاریخ انتشار 2017